Limit cycles of polynomial systems with homogeneous non-linearities

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Limit Cycles of the Polynomial Differential Systems with a Linear Node and Homogeneous Nonlinearities

We consider the class of polynomial differential equations ẋ = λx + Pn(x, y), ẏ = μy + Qn(x, y) in R where Pn(x, y) and Qn(x, y) are homogeneous polynomials of degree n > 1 and λ 6= μ, i.e. the class of polynomial differential systems with a linear node with different eigenvalues and homogeneous nonlinearities. For this class of polynomial differential equations we study the existence and non–e...

متن کامل

Limit Cycles Bifurcating from Planar Polynomial Quasi–homogeneous Centers

In this paper we find an upper bound for the maximum number of limit cycles bifurcating from the periodic orbits of any planar polynomial quasi-homogeneous center, which can be obtained using first order averaging method. This result improves the upper bounds given in [7].

متن کامل

Identification of FIR Wiener systems with unknown, non-invertible, polynomial non-linearities

Wiener systems consist of a linear dynamic system whose output is measured through a static non-linearity. In this paper we study the identification of single-input single-output Wiener systems with finite impulse response dynamics and polynomial output non-linearities. Using multi-index notation, we solve a least squares problem to estimate products of the coefficients of the non-linearity and...

متن کامل

Limit Cycles for a Generalized Kukles Polynomial Differential Systems

We study the limit cycles of a generalized Kukles polynomial differential systems using the averaging theory of first and second order.

متن کامل

2 3 M ay 2 00 5 EXPLICIT NON - ALGEBRAIC LIMIT CYCLES FOR POLYNOMIAL SYSTEMS

We consider a system of the form ẋ = Pn(x, y) + xRm(x, y), ẏ = Qn(x, y) + yRm(x, y), where Pn(x, y), Qn(x, y) and Rm(x, y) are homogeneous polynomials of degrees n, n and m, respectively, with n ≤ m. We prove that this system has at most one limit cycle and that when it exists it can be explicitly found. Then we study a particular case, with n = 3 and m = 4. We prove that this quintic polynomia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1989

ISSN: 0022-247X

DOI: 10.1016/0022-247x(89)90021-8